Serial verb constructions in Mwotlap

Alexandre FRANÇOIS
LACITO-CNRS

Mwotlap is an Austronesian language of the Oceanic branch, spoken by about 1800 speakers on Motalava, a small island of the Banks group, north of Vanuatu (François 2001, 2003). Contrary to many languages from the same area—e.g. Paama (Crowley 1987), Ambae (Hyslop 2001), Araki (François 2002)—, Mwotlap has almost no traces of serialisation between verb phrases (of the type I'll push you you'll fall). The only productive case of verb serialisation is of a different pattern, with two or more verbs chained together within a single verb phrase (of the type I'll push fall you). A typical example of this serialising construction can be heard in a famous love song:

(1) [lak téy yoyoũ êwê] no
 AOR:dance hold be.quiet be.fine me
 ‘Just dance with me calmly’

Simple though it may be, a sentence like (1) raises a number of issues. What are the relations, both syntactic and semantic, between the four verbs? How do they combine their lexical semantics, their Tense-Aspect-Mood values, their argument structures? How do such constructions compare with other serialising patterns cross-linguistically?

After situating Mwotlap SVCs in their syntactic context (§1), we will describe their structural properties (§2), paying special attention to the sharing of arguments (§3). We will then propose a functional classification of these serial verbs (§4), and end our reflection with a note on multi-verb serialisation (§5).

1 To be precise, Mwotlap does possess a type of pauseless parataxis that is reminiscent of the so-called ‘Core-layer serialisation’, such as Give me some water I drink it (François 2003: 188). However, it appears that this construction is limited to a specific TAM context (the second verb must be inflected as Aorist) and to a single semantic value (the expression of purpose). Consequently, this structure is probably better described as a case of paratactic subordination involving two distinct clauses, rather than a standard case of verb serialisation.

2 The spelling conventions adopted for Mwotlap include the following: e = [ø]; ê = [i]; o = [a]; ô = [u]; g = [j]; b = [mb]; d = [nd]; q = [kp]; ñ = [ŋm]; ñ = [ŋ].
1 Clause structure and verb serialisation

1.1 A preliminary note on word classes

The inventory of word classes in Mwotlap makes it possible to distinguish between verbs and adjectives. For example, verbs cannot modify a noun directly, whereas adjectives can: compare *nêmjey gom*[adj] (‘a sick child’) and *nêmjey teŋ*[vb] (‘a cry child’). And yet, adjectives and verbs behave exactly the same way outside noun phrases. For example, both categories require TAM markers in order to form a valid predicate phrase, without any copula:

(2a) inti-k me-teŋ
 child-1sg PRF-cry
 ‘My son is crying’
(2b) inti-k mo-gom
 child-1sg PRF-sick
 ‘My son is sick’

Since the study of serial structures is not concerned with noun phrases, it will be legitimate, for our present purposes, to consider adjectives as forming a subclass of (intransitive, stative) verbs.

1.2 The structure of the clause

The standard order of constituents in Mwotlap is SV for intransitive and AVO for transitive clauses, which is typical of a nominative-accusative system. In the absence of any sort of case-marking, the syntactic function of the core arguments is indicated by their syntactic position. Verbs are either strictly intransitive or strictly transitive, a few being ambivalent (mainly of the S=A type). Mwotlap does not allow for double-object constructions.

Although TAM markers often consist of just a prefix, some of them are discontinuous, combining a prefix and a postclitic, like the Potential *te-… vêh* or the negator *et-… te*. This morphological property makes them a convenient tool to test the boundaries of the verb phrase, as they clearly show which constituents belong inside vs outside the VP. For instance, in (3) below, the position of *vêh* allows us to distinguish between two distributional word classes, which in English would correspond to the single category of ‘adverbs’ (*again* and *tomorrow*):

(3) kömyô [TE-gen lok se VÊH] na-mdap talôw le-mtap
 2du POT1-eat back again POT2 ART-pineapple tomorrow in-morning
 ‘You’ll be able to eat pineapple once again tomorrow morning’

Reserving the term ‘adverb’ for those peripheral complements which always appear outside the VP (e.g. *talôw* ‘tomorrow’), we propose the term ‘adjunct’ (Crowley 1982: 162) to designate those modifiers which belong inside the VP, and appear immediately after its head (e.g. *lok* ‘back’ and *se* ‘again’); we’ll come back to this notion below.
We now have enough information to state the canonical structure of the sentence in Mwotlap:

\[
\{ \text{subject} \ [\text{TAM}_1-\text{HEAD}\ \text{adjuncts}\ \text{TAM}_2]_\text{vp} \ \text{object}\ \text{adverb/oblique} \}
\]

Note that the object phrase is always external to the VP, unless we are dealing with an incorporated object (see §2.1).

1.3 The nature of adjuncts, and the limits of SVCs

Rather than a lexical category, the term ‘adjunct’ designates a syntactic position in the clause—that is, any word that appears within a predicate phrase, immediately following its head. Crucially, this position of VP-internal modifier can be lexified by more than one word class. First, Mwotlap possesses a category of ‘pure adjuncts’, which cannot appear anywhere else in the sentence other than that position. These were illustrated in (3), with \textit{lok} and \textit{se}.

But in some cases, the adjunct slot can also be filled by a noun:

(4) Tigsas kê et-wot vu te, kê mo-wot et

Jesus 3sg \text{NEG}_1-be.born spirit \text{NEG}_2 3sg \text{PRF-be.born person}

‘Jesus was not born a spirit, he was born a man’

It is also common to find an adjective in the same position:

(5) Imam ma-hag qaqa êwê l-êm

Dad \text{PRF-sit} stupid just in-house

‘Dad is just staying idle/idly at home’

And in many cases, the adjunct position is filled by a verb:

(6) nitog hohole galgal!

\text{PROH talk:REDUP lie:REDUP}

‘Stop lying!’

Following the discussion in §1.1, the description of serial verb constructions will be concerned by sentences like (5) as well as (6).

It is also worth mentioning cases in which the adjunct slot is filled by a word that was formerly a verb, but has now become a pure adjunct:

(7) nok [tig \textit{day}] bulsal mino

1sg \text{AOR:stand} (\textit{expect}) friend my

‘I’m (standing) waiting for my friend’

In a former stage of the language, when \textit{day} could still behave as a verb in its own right, a sentence like (7) would have had to be described as a serial verb construction (‘stand wait’), just like (6). But although it has retained certain features typical of verbs—such as a transitive argument structure—, the lexeme \textit{day} is now restricted to this modifying position, as though it
had become a sort of applicative clitic. As it no longer satisfies the definition of a verb—that is, compatibility with the position of head in a verb phrase—, it is methodologically necessary to exclude such cases from our synchronic study of serial verbs. We will however come back to this issue in the conclusion.

2 Structural properties of Mwotlap SVCs

A serial verb construction can consist of two or more elements; the longest string attested is four verbs. We will start by examining the rules for ‘simple’ serial verbs (V1+V2), and will return to multi-verb serialisation in §5.

The formal properties of Mwotlap SVCs can be stated according to the typological criteria and terminology set out in the first chapter of this book. These are given in Table 1, and will be addressed separately in the following discussion.

<table>
<thead>
<tr>
<th>contiguity V1/V2?</th>
<th>strict contiguity</th>
</tr>
</thead>
<tbody>
<tr>
<td>wordhood V1/V2?</td>
<td>one prosodic word, two phonological words</td>
</tr>
<tr>
<td>symmetry V1/V2?</td>
<td>asymmetrical serial verbs (major + minor)</td>
</tr>
<tr>
<td>Tense-Aspect-Mood, negation</td>
<td>identical + single-marking</td>
</tr>
<tr>
<td>pluractionality (reduplication)</td>
<td>non-identical + independent marking</td>
</tr>
<tr>
<td>argument sharing constraints</td>
<td>fusion rules (2 structures merging into 1)</td>
</tr>
</tbody>
</table>

2.1 Contiguity

The two verbs forming an SVC must be strictly contiguous, that is, no element can intervene between them, whether this is an object or an oblique phrase. Even ‘pure adjuncts’, which are allowed in the VP, are not normally inserted between two serialised verbs. The only apparent exception to this rule is when the object of V1 is incorporated. In this case, the object O1 is suffixed to V1, and therefore surfaces between the two verbs, as in:

(8) nok [suwyeg-qen têy] nu-sus

lsg AOR:cast-net hold ART-shoes

‘I go net-fishing with my shoes on’

This construction—which is very rare anyway—is easily explained if one realises that the first element in the SVC is not the transitive verb suwyeg ‘cast’, but an intransitive, compound verb of the form suwyeg-qen /cast-net/ ‘to net-fish’, with an incorporated object. A sentence like (8) is therefore no exception to the rule of strict contiguity between V1 and V2.
2.2 One or two words?

The two parts of an SVC are so close to each other that it is sometimes tempting to analyse the string \(V_1 + V_2 \) as an instance of verb compounding. This brings up the issue of wordhood in SVCs: are we dealing with one or two words?

At first sight, several arguments may advocate a one-word analysis. Indeed, \(V_1 \) and \(V_2 \) are not only strictly contiguous, but they also form a single prosodic unit: e.g. \(\text{yow veteg /jump leave/} \) will have only its final syllable stressed \([\text{j]\ o\ w\ /\ v\ e\ t\ e\ g\}] \) and no intonation break, like a single word. Semantically, the whole string \(V_1 + V_2 \) often ends up being endowed with certain semantic features that can be assigned to neither of its components, as though it now formed a single unit: thus, \(\text{yow veteg /jump leave/} \) means ‘escape from (s.o., s.th.)’, without implying any real ‘jumping’ event; \(\text{dêm veteg /think leave/} \) is the usual way to translate ‘give up (s.th.), forgive (s.o.)’. Yet, this is not sufficient evidence to conclude that we are dealing with a single word, as it is common for lexical units to consist of several words.

Another piece of evidence will ultimately prove SVCs to form distinct phonological words. Indeed, the phonotactic rules of Mwotlap make it possible to strictly identify the boundaries of the word. The only syllable pattern allowed in this language (François 2000) has the form CVC (with optional consonants), so that the phonotactic template of any word is \(#\text{CVC|CVC}\ldots|\text{CVC#} \). Consequently, clusters of two consonants are only allowed across syllable boundaries within a word, and never word-initially. There are two possible outcomes when a lexical root of the form \(\text{C}_1\text{C}_2\text{V}^- \) has to be integrated in a sentence:

- if the root is in the position to begin a new syllable (typically after a word boundary), then the sequence \(#\text{C}_1\text{C}_2\text{V}^- \) undergoes a vowel epenthesis, whereby a clone of \(V \) is inserted between the two consonants: e.g. \(/\text{VTEG}/ \) ‘leave’ \(\rightarrow nêk\ so\ \text{veteg} \) ‘you should leave it’;
- conversely, if the same root is preceded by a vowel-final prefix, then the prefix + lexeme string forms a single word. The syllable boundary occurs between \(\text{C}_1 \) and \(\text{C}_2 \), with no need for epenthesis: e.g. \(/\text{VTEG}/ \rightarrow nêk\ \text{te-pekteg} \) ‘you will leave it’.

In this pair of examples, the behaviour of the root \(/\text{VTEG}/ \) with regard to vowel epenthesis makes it clear when we are dealing with a single phonological word (form \(\text{te-pekteg} \): hence \(\text{te-} \) ‘Future’ is a prefix) or with two distinct words (form \(\text{so veteg} \): hence \(\text{so} \) ‘Prospective’ is not a prefix). We can now apply the same phonological test to our serial verbs—provided the first verb ends in a vowel, and the second verb has an underlying CCV- root. If we consider the combination of \(V_1 /\text{HÔ}/ \) ‘paddle, travel in canoe’ with \(V_2 /\text{VTEG}/ \), the surface form we observe (‘paddle away’) is \(hô\ \text{veteg} \), not \(*hô-ppekteg \): \(V_1 \) and \(V_2 \) are thus separated by a word boundary, and cannot be said to form a single, compound word. As a conclusion, serial verbs in Mwotlap always remain distinct phonological words, whatever their degree of semantic or prosodic cohesion.

Finally, from the morphological point of view, examples (11a-b) below will show that root reduplication affects independently each element in a serial construction. This is also a strong argument in favour of the conclusion that Mwotlap SVCs fundamentally consist of separate
2.3 Sharing verbal categories

If the serial verbs of Mwotlap were to be compared with other languages, they would probably stand at one end of the typological spectrum, that labeled ‘prototypical serial verbs’ in Chapter 1, and characterised by the highest degree of cohesion between its elements. Indeed, SVCs essentially behave the same as a single lexeme, with regard to almost all the semantic categories that may affect a verb phrase. Thus, all Tense-Aspect-Mood markers are obligatorily shared by V1 and V2, and they are marked only once:

(9) kēy [to-yoŋteg vēglal vēh] na-lñe
 3pl POT1-hear know POT2 ART-voice:2sg
‘They might recognise your voice’

In (9), the Potential marker te-… vēh appears once, and is shared by the two verbs; to use the terms of Chapter 1, Mwotlap SVCs are characterised by ‘single marking’ of TAM.

The same observation is true for negative markers, which in this language belong to the TAM paradigm rather than combine with it. Elements of an SVC cannot be negated separately, even if, semantically speaking, only one verb (here V2 maymay) falls under the scope of the negation:

(10) kōyō may leg, ba [et-leg maymay qete]
 3du COMPL married but NEG1-married strong NEG2:COMPL
‘They’re already married, but not fully married yet’

There seems to be only one semantic category that is assigned independently to each member of an SVC: this is pluractionality, which is morphologically coded by root reduplication (François 2004b). In the next example, one may contrast different combinations, according to whether V1 refers to one ‘stoning’ event (yim) or to several (yimyim); and whether V2 refers to one death (mat) or to several (matmat):

(11a) no [mi-yim matmat] ne-men
 1sg PRF-stone die:REDUP ART-bird(s)
‘I stoned the birds (once) and killed them’

(11b) kem [mi-yimyim mat] ne-men
 1exc:pl PRF-stone:REDUP die ART-bird(s)
‘We stoned the bird(s) and killed it/them outright’

Finally, another important issue deals with the sharing of argument structures in serial verbs: this will be the topic of §3.
2.4 Syntactic asymmetries of V_1/V_2

The properties of Mwotlap SVCs reviewed thus far tend to suggest we are dealing with two verbs V_1 and V_2 placed on the same syntactic level, so that it might be tempting to talk about a non-hierarchised, multi-headed structure. In fact, several arguments show that V_1 and V_2 have a distinct status, and that their combination remains asymmetrical.

First of all, V_1 and V_2 do not have the same inventory. If all verbs are attested in the V_1 slot, it is not true they can all function as V_2: such common verbs as \textit{van} ‘go’, \textit{vap} ‘say’, \textit{yo\text{"e}teg} ‘feel’ or \textit{d\text{"e}m} ‘think’ are attested only as V_1, and never as V_2. In other words, the inventory of verbs that can be serialised, however numerous, appears to constitute a (semi) closed list; the choice of V_2 is clearly not as free as it seems at first.

Among other elements that betray an asymmetry between V_1 and V_2, a handful of verbs show morphological differences according to their position. The verb ‘know’ has the form \textit{\text{"e}glal} when used alone or as a first verb in a series, but becomes \textit{\text{"e}glal} in the position of V_2, as in (9). The verb \textit{sok} is reduplicated as \textit{soksok} when used alone or as V_1, but as \textit{sosok} when V_2; similarly, \textit{t\text{"e}y} ‘hold’ reduplicates as \textit{t\text{"e}yt\text{"e}y} if V_1, but \textit{t\text{"e}t\text{"e}y} if V_2, and so on. These ‘SVC specific forms’ are seen only in this adjunct position.

The difference between V_1 and V_2 is even more striking if we begin to consider semantics. Quite often, a verb lexeme will keep its proper meaning when it is used as V_1, but will receive a more abstract or figurative interpretation when used as a verb modifier. To take just a couple of examples, \textit{t\text{"e}y} normally means ‘hold in o.’s hands’ when in head position, but has a broader comitative meaning (‘be or act \textit{with} s.o./s.th.’) when it acts as a verb modifier, as in (1) and (8). Similarly, \textit{v(e)teg} as V_1 means ‘lay (s.th.) down, take leave of (s.o.)’; but as V_2, its more abstract meaning ‘away from (s.th./s.o.)’ allows for figurative uses such as ‘leave, forget, forgive, surpass…’ (see §2.2).

All these arguments tend to confirm that the SVCs of Mwotlap, despite apparently forming a balanced string of two verbs V_1+V_2, illustrate in fact what the typological chapter of this book called ‘asymmetrical serial verbs’, whereby a ‘minor verb’ from a closed class (adjunct V_2) is being serialised to a ‘major verb’ from an open class (head V_1).

3 Sharing arguments in Mwotlap SVCs

3.1 Basic principles

In §2.2, we saw that the SVCs of Mwotlap are characterised by a strong internal cohesion, so that they necessarily share the same value in Tense-Aspect-Mood or in polarity. The issue of argument-sharing is much more complex, and deserves to be examined in detail. It will appear that Mwotlap challenges certain typological statements in this regard.

The principles of our analysis are as follows. While each member of an SVC is lexically endowed with its own underlying argument structure, when serialised they behave exactly like
a single verb: in particular, the SVC can have no more than one subject and one object. This raises the question of how the argument structures of the two verbs can conflate so as to form the argument structure of the whole ‘macro-verb’. A systematic study (François, 2004a) has shown Mwotlap to follow strict rules in this regard: thus, (13) below will show how the combination of V1, ‘x punch y’ and V2 ‘y cry’ regularly results in a transitive macro-verb V1+V2 ‘x punch-cry y’, with the subject of V2 becoming the object of the serial verb V1+V2.

The results of this study can be stated, following a subject-V-object convention, with simple formulas of the type: \{ x-V1-y + y-V2 = x-[VP]-y \}. These argument-fusion rules can in turn be grouped in a simple chart (Table 2). The two rows state whether V1 is intransitive (x-V1) or transitive (x-V1-y); the eight columns not only show the transitivity value of V2, but also the identity of arguments involved (x, y, z).3

<table>
<thead>
<tr>
<th>E-V2</th>
<th>x-V2</th>
<th>y-V2</th>
<th>x-V2-y</th>
<th>z-V2</th>
<th>x-V2-z</th>
<th>z-V2-y</th>
<th>y-V2-z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-V1</td>
<td>x-[VP]</td>
<td>x-[VP]</td>
<td>x-[VP]-y</td>
<td>x-[VP]-y</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>x-V1-y</td>
<td>x-[VP]-y</td>
<td>x-[VP]-y</td>
<td>x-[VP]-y</td>
<td>x-[VP]-z</td>
<td>x-[VP]-z</td>
<td>x-[VP]-z</td>
<td>*</td>
</tr>
</tbody>
</table>

Due to lack of space, we will not illustrate each of these combinations in detail,4 and will only present the major observations with regard to argument sharing rules.

3.2 Subject sharing principles

As one would expect, it is common for two serialised verbs to share their subject:

(12) Tita [ta-hag déyê] nêk l-ê¼ Mum FUT-sit expect 2sg in-house

‘Mum will stay at home waiting for you’

\[\rightarrow \{ x-V1 + x-V2-y = x-[VP]-y \} \]

However, subject sharing is not obligatory in Mwotlap. A clear example of this is the case of ‘switch-function serial verbs’, in which V2’s subject coincides with V1’s object:

(13) Tali [mi-tit teṣteṣ] Kevin

‘Tali made Kevin cry by punching him’

\[\rightarrow \{ x-V1-y + y-V2 = x-[VP]-y \} \]

But Mwotlap shows certain configurations that are typologically even more original than

3 In these formulas, x designates the subject of V1; y is any second argument distinct from x (either V1’s object, V2’s subject or V2’s object); finally, z is any third argument distinct from x and y (either V2’s subject or object). The mention of z in a formula is only relevant if it contrasts with both x and y, and therefore, if it follows a transitive V1; hence the gray boxes in the chart. The star means ‘unattested’. As for the first column of the table, see §4.3.

4 For those minor patterns which are not exemplified here, see François (2004a).
One of these is a variant of what is known as ‘cumulative subject’ (see ex. (30) in the introductory chapter): if one subject semantically includes the other (in the same way as we includes I), then the subject of the whole SVC will correspond to the more inclusive of these two subjects. This case is best exemplified by sentences meaning ‘accompany (s.o.)’, where ‘(x+y)-go + x-take-y’ becomes ‘(x+y)-[accompany]-y’:

\[
\text{(14) } \text{dô [so } \text{tatal têy] no le-tno plên?}
\]

\[
\text{lit. Shall the two of us walk-and-take me to the airport?)}
\]

\[
\text{→ } \{ (x+y)-V_1 + x-V_2-y = (x+y)-[VP]-y \}
\]

Interestingly, this original construction has made its way into the Bislama pidgin spoken on Motalava: the equivalent of (14) would be \text{YUMITU karem MI i go long eapot?} The people of the neighbouring islands, whose Bislama would be slightly different here \text{(YU karem MI i go...)}, are sometimes amused by this strange dual subject, directly calqued from Mwotlap.

The second configuration we would like to mention here is perhaps even more significant, because it contradicts the claim often made (e.g. Durie 1997: 291) that the elements of an SVC must share at least one argument. In Mwotlap, it is not unusual to serialise two verbs having no participant in common at all. This happens typically when \(V_1\) refers to a single-participant action, and \(V_2\) refers to its effect upon another participant. The output of this combination is a transitive macro-verb—as is made clear by (15) and the corresponding formula:

\[
\text{(15) ige susu [ma-gayka matyak] no pl small:REDUP PRF-shout be.awake 1sg}
\]

\[
\text{‘I was woken up by the kids shouting’}
\]

\[
\text{→ } \{ x-V_1 + y-V_2 = x-[VP]-y \}
\]

Note that in this type of sentence, both verbs are intransitive, as they individually refer to single-participant events: \(\{x-V_1\}\) the kids were shouting in the backyard, \(\{y-V_2\}\) I awoke. Yet the serialisation of these two intransitive verbs eventually forms a transitive macro-verb \(\{x-[VP]-y\}\), as though the action now described were that of an agent (‘the kids’) upon a patient (‘me’).

Among other attested combinations, we can mention the following. Note that these examples, whatever the ambiguities of translation, all combine intransitive verbs.

\[
\text{(16) ne-leñ [mi-yip hal-yak] na-kat ART-wind PRF-blow fly-away ART-cards}
\]

\[
\text{‘The wind blew the cards away’}
\]

\[
\text{(17) nêk [so en môkheg] nê-kle! 2sg PROSP lie.down take.rest ART-back:2sg}
\]

\[
\text{‘You should lie down (so that) your back can rest!’}
\]
(18) nêk [mi-tig mëlêmêg] na-lo den kemem
2sg PRF-stand black ART-sun from lex:pl
‘Standing as you are, you're hiding the sun from us’
(lit. You're standing dark the sun from us)

Incidentally, all these examples (15) to (18) form a subcase of what will later be defined as ‘causative serialisation’ (§4.2; see Table 4). Its difference with mainstream causatives is the intransitive nature of V₁, semantically referring to a single-participant event.

3.3 Object sharing principles

Similar remarks can be made on the issue of object sharing. Of course, serialised verbs can share their object, as we saw in (9); but it can also happen that each verb possesses its own underlying object. Because Mwotlap does not allow for ditransitive constructions, only one of these two objects can be retained for the whole SVC, and this may result in syntactic conflicts.

The principle is that the last argument introduced by V₂ (z) overrules the object of V₁ (y); the latter disappears from the argument structure of the SVC, and can only be retrieved from the context. In (19), the object of V₁ tow (n-eh ‘song’) is only mentioned in the topic clause:

(19) nêk so tow n-eh en,
2sg PROSP compose ART-song ANA
… nêk [tow tatag] na-myôs nônôm
2sg AOR:compose follow ART-desire your
‘(if) you compose a song, you just compose following your fancy’

There is no place for the argument ‘song’ in the resulting serial structure; the only object retained is the patient of V₂ (‘follow your fancy’):

you COMPOSE song + you FOLLOW fancy = you COMPOSE—FOLLOW fancy
that is: { x-V₁-y + x-V₂-z = x-[VP]-z }

An even rarer example of this sort of alchemy is provided by the next sentence:

(20) ige rêy a kéy so lep n-eh en,
(pl) REL SUBORD 3pl PROSP take ART-song ANA
… nok [se lep] kéy
1sg AOR:sing take 3pl
‘Those who want to learn the song, I get them to learn it by singing it’

The pattern here is as follows:

I SING song + they LEARN song = I SING—LEARN them
that is: { x-V₁-y + z-V₂-y = x-[VP]-z }

What is perhaps most striking in all these cases of argument restructuring is their perfect regularity (see Table 2). And in fact, the tighter the syntactic constraints are, the more
4 A functional classification of Mwotlap SVCs

The previous sections were essentially dedicated to the formal and structural properties of Mwotlap serial verbs; we will now undertake a brief semantic typology of these constructions. Interestingly, this functional classification will turn out to be strongly linked to the formal one, as the three major functional categories of serial verbs we recognise depend on whether the subject of V2 is the same as V1 (‘concurrent’ serialisation), whether it is another participant (‘causative’ serialisation), or a whole proposition (‘event-argument’ serialisation).

4.1 Concurrent serialisation

Despite the empirical diversity of serial constructions in Mwotlap, it is possible to identify a first major functional type: this is when V1 and V2 refer to two simultaneous facets of a single event, performed by the same subject. This semantic value, which we identify as ‘concurrent serialisation’, encompasses a variety of argument structures, with the only proviso that the subject must be the same for V1 and for V2 (x). The relevant patterns are listed in Table 3.

<table>
<thead>
<tr>
<th>E-V2</th>
<th>x-V2</th>
<th>y-V2</th>
<th>x-V2-y</th>
<th>z-V2</th>
<th>x-V2-z</th>
<th>z-V2-y</th>
<th>y-V2-z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-V1</td>
<td>–</td>
<td>x-[VP]</td>
<td>–</td>
<td>x-[VP]-y</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>x-V1-y</td>
<td>–</td>
<td>x-[VP]-y</td>
<td>x-[VP]-y</td>
<td>–</td>
<td>x-[VP]-z</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

An illustration of this functional type would be the following:

(21) kôyô [ma-tatal kaka] le-mtehal
3du PRF-walk chat LOC-road
‘They were discussing while walking along the road’

See also (6) hohole galgal /talk lie/; (9) yoŋteg vēglal /hear know/; (12) hag dēyē /sit expect/; (19) tow tataq /compose follow/. Whatever their formal and semantic diversity, all these sentences share one essential property: they show the same participant performing two actions (V1 and V2) at once. Quite originally, the same-subject serial verbs of Mwotlap always refer to concurrent, complementary facets of a single event, never to successive actions.\(^5\)

Of course, nothing prevents the ‘concurrent’ type from being divided into some secondary functional subtypes, depending on the lexical nature of V1 and/or of V2. For example, the

\(^5\) The only apparent exception to this statement would be the frequent combination of the verb van ‘go’ with a second verb (e.g. van wēl mu-suk ‘go buy some sugar’), which indeed has a sequential interpretation. In fact, this sequence of two verbs is not a standard case of SVC: first, because the verb following van belongs to the inventory of heads (V1) rather than of adjuncts (V2); second, this structure allows the sequence V–V’ to be separated by a directional, which is strictly forbidden to genuine serial structures.
combination of any motion verb \((V_1)\) with the adjunct \(tēy\) ‘hold’ \((V_2)\) translates the notion of ‘carry, bring’:

\[(22)\]
\[
\text{Bōybōy } [\text{mē-ḥēw } tēy] \text{ me na-mtig} \\
\text{B. PRF-descend hold hither ART-coconut} \\
\text{‘Boyboy has brought the coconuts down’}
\]

More generally, \(V_1 + tēy\) receives a comitative reading, as in \((1)\) \(lak tēy\) /dance hold/ ‘dance with (s.o.)’, or in \((8)\) \(suwyeg-gen tēy\) /cast-net hold/ ‘go net-fishing with (my shoes on)’. Another kind of comitative—still a case of ‘concurrent’ serialisation—can be formed with \(V_2\) \(b(i)yīn\) ‘help, join’:

\[(23)\]
\[
\text{dō } [\text{so } lak biyiν] \text{ kēy?} \\
\text{1inc:du PROSP dance join 3pl} \\
\text{‘Shall we dance with them?’}
\]

This broad category of ‘concurrent serial verbs’—\(V_1\) and \(V_2\) being two facets of a single predication, with the same subject—also covers more abstract configurations, such as the comparative. This consists of the combination of a stative \(V_1\) plus a verb we have already discussed (§2.2 and 2.4), \(v(e)tēg\) ‘put down, leaveTR, get away from, surpass’:

\[(24)\]
\[
\text{kē } [\text{nē-mnay veteg}] \text{ nēk} \\
\text{3sg STAT-clever leave 2sg} \\
\text{‘He’s cleverer than you’ (lit. he’s clever he leaves you behind)}
\]

It may seem surprising to group in a single functional category such diverse semantic values as simultaneous action \((21)\), comitative \((1, 23)\), and comparative \((24)\). However, it must be clear that our present objective is not to classify Mwotlap serial verbs according to their translation equivalents in English. Rather, it is to illustrate how a single linguistic device—namely, the mere sequence of two verbs \(x-V_1\ldots + x-V_2\ldots\)—can be powerful enough to consistently encode a wide range of semantic relations, which in other languages would have been formally broken down into many distinct structures (adverbs, prepositions, gerunds or converbs, subordinate clauses, etc.).

4.2 Causative serialisation

A radically distinct configuration is when \(V_2\) refers to the effect of \(V_1\) upon a second participant. This serialising pattern is the only way to form causatives in Mwotlap. Here we are not dealing with simultaneous actions any more, but with a cause-effect relationship, which necessarily implies that \(V_1\) comes before \(V_2\) in time. Once again, this large functional category may encompass several formal structures (Table 4)—the only criterion being that \(V_2\)’s subject \((y\text{ or } z)\) be a participant distinct from \(V_1\)’s subject \((x)\).
Table 4 – The five formal subtypes of ‘causative’ serialisation

<table>
<thead>
<tr>
<th>y-V2</th>
<th>z-V2-y</th>
<th>z-V2-z</th>
<th>y-V2-z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-V2</td>
<td>x-V2-y</td>
<td>x-V2-z</td>
<td></td>
</tr>
<tr>
<td>x-V1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The most widespread illustration of causative serialisation is the so-called ‘switch-function’ SVC, that is, \{ x-V1_y + y-V2 = x-[VP]_y \}. It can make use of two dynamic verbs, as we saw in (13) \textit{tit teññ̓eñ̓ /punch cry/}; but most of the time, the second verb V2 is a stative verb or an adjective, as in (11) \textit{yim mat /stone dead/}.

The causative function is not restricted to this standard switch-function pattern. In §3.2, we saw how a cause-effect relationship could be expressed by a sequence of two intransitive verbs, the subject of V2 being absent from the underlying structure of V1; examples such as (16) \textit{yip halyak /blow fly.away/} may be described as ‘low agency causative serialisation’.

Finally, a sentence like (20) \textit{se lep /sing learn/}, despite its structural originality, clearly belongs to the same category of causative serialisation.

4.3 Event-argument serialisation

The last major functional type that can be identified recalls the role played by English manner adverbs: a stative, intransitive verb V2 constitutes a comment on the first verb V1. The underlying subject of V2 is not an individual participant, but the whole event (abbreviated \(E \)) corresponding to V1—more precisely, V1 and its arguments. This definition corresponds to two formal subtypes (Table 5).

Table 5 – The two formal subtypes of ‘event-argument’ serialisation

<table>
<thead>
<tr>
<th>y-V2</th>
<th>z-V2-y</th>
<th>z-V2-z</th>
<th>y-V2-z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-V2</td>
<td>x-V2-y</td>
<td>x-V2-z</td>
<td></td>
</tr>
<tr>
<td>x-V1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first case was illustrated by (1) \textit{lak yoyoñ /dance quiet/ ‘dance calmly’}; (5) \textit{hag qaqa /sit stupid/ ‘stay idly’ or (10) leg maymay /married strong/ ‘be fully married’}. The second case involves a transitive V1:

\begin{align*}
\text{(25) } na-bago & \left[\text{mi-}ñ̓̊it \text{ maymay} \right] na-mañañ̓̊al en \\
\text{ART-shark PRF-bite strong ART-girl ANA} & \\
\text{‘The shark bit viciously (lit. bit strong) the girl’}
\end{align*}

\[\rightarrow \{ x-V1_y + E-V2 = x-[VP]_y \} \]

In this sentence, the subject of maymay (‘be strong’) is not the shark, let alone its victim; what is meant to be ‘strong’ is event V1 itself, i.e. ‘the shark's biting the girl’. Formally speaking,
one will notice that this sort of serialisation always leaves the argument structure of the head intact.

This construction explains why the lexicon of Mwotlap almost lacks manner adverbs (like Eng. *strongly, gently*...): this role is played by adjectives in the adjunct position, in the structure we call ‘event-argument serialisation’.

5 Multi-verb serialisation

All the rules we have seen, whether formal or functional, have been illustrated by serial verbs with only two members. The last issue we would like to address concerns the multi-verb serialisation. How can the speaker calculate, say, the argument structure of an SVC with four elements? This problem is easily solved if one remembers that any macro-verb resulting from serialisation behaves exactly like a simple verb; it then becomes possible to describe any string of verbs starting from the head \(V_1\), moving rightwards, and recursively applying the rules defined for any pair of verbs:

\[
[[V_1–V_2]–V_3]–V_4
\]

We will illustrate this principle with two examples.

(26) kêy [laṭ̣ mat veteg] hôw nō-lōmgep en
3pl AOR:beat die leave down ART-boy ANA
‘They got rid of the boy by beating him to death’

The first combination is a CAUSATIVE SVC, *laṭ̣ mat /beat dead* /‘beat to death, kill’:

\[
\{ \text{they}-\text{beat-boy} + \text{boy-dead} = \text{they}-(\text{kill})-\text{boy} \}
\]

this macro-verb is then incorporated into a CONCURRENT SVC, *laṭ̣-mat veteg / (kill) leave* /‘get rid of (s.o.) by killing him’, which forms a transitive ‘super-macroverb’:

\[
\{ \text{they}-(\text{kill})-\text{boy} + \text{they}-\text{leave-boy} = \text{they}-(\text{get.rid.of})-\text{boy} \}
\]

Finally, we can now fully analyse the complex example in the first pages of this chapter:

(1) [lak tēy yoyo̞n ēwē] no
AOR:dance hold be.quiet be.fine me
‘Just dance with me calmly’

This string of four verbs must be analysed step by step. The intransitive verb \(V_1\) ‘dance’ and the transitive \(V_2\) ‘hold’ together form a case of CONCURRENT SVC; the result is a transitive verb with a comitative reading:

\[
\{ \text{you}-\text{dance} + \text{you}-\text{hold-me} = \text{you}-(\text{dance.with})-\text{me} \}
\]

In a second stage, this macro-verb is embedded in two successive EVENT-ARGUMENT SVCs, which leave its argument structure intact:

\[
\{ \text{you}-(\text{dance.with})-\text{me} + \text{it}-\text{is.quiet} = \text{you}-(\text{dance.calmly.with})-\text{me} \}
\]
{ you-(dance.calmly.with)-me + it.is.fine = you-(just.dance.calmly.with)-me }

The pronoun no in (1) is both the object of V₂ ‘hold’ and the object of the whole serial verb construction, which ultimately behaves as a single verb.

The general tendency, as illustrated in this example, is for Event-argument SVCs to occur towards the end of the VP—that is, they form the final steps in the chronology of multi-verb serialisation. The two other types of SVCs are typically met at the beginning of a serial string, with both orders attested equally: either Causative embedded in Concurrent (26), or the reverse.

6 Conclusion

Verb serialisation is perhaps one of the domains of Mwotlap grammar which are the most productive and subject to historical change. Certain unattested combinations may one day come to light, while other sequences will eventually disappear; some verbs acquire novel properties according to their position as a head or an ‘adjunct’; some lexemes even progressively change their categorial status and specialise in the function of modifier, either grammaticalising as a valency-increasing applicative, or simply becoming some sort of adverb, a new building block for phraseological innovation. But paradoxically, although this evolution derives intricately from the formal and functional properties of verb serialisation, methodological concerns make it difficult to integrate them into the description of ‘serial verbs’ strictly speaking (§1.3).

Language typology tends to focus more on ‘universal’ word classes such as verbs, at the risk of leaving certain language-specific categories undescribed, like the one we called ‘adjuncts’ in Mwotlap. And yet, studying this rich class of verb modifiers, many of which originally come from verbs in former SVC patterns, would logically constitute the next step in the description of Mwotlap verb serialisation.
7 References

